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Abstract

1. Population structure and gene flow of species in lotic environments can be con-

strained by river network architecture, species life history and heterogeneous

local barriers. Identifying the factors that influence population structure and gene

flow, especially in species limited to movement within a river network, is vital for

understanding the evolutionary and demographic history of a species.

2. We explored population structure and gene flow for a fully aquatic salamander,

the common mudpuppy (Necturus maculosus), in Kentucky (USA) using genomic

data. We examined population structure using both parametric and nonparamet-

ric methods, and we tested for a history of lineage divergence among identified

genetic clusters. We quantified the partitioning of genetic variation at different

hierarchical levels, and we tested for signatures of isolation by distance. Addi-

tionally, we used coalescent-based model selection to identify a best-fit model

of gene flow between our three sampled basins.

3. We found the greatest support for population structure between the Kentucky

River basin and the combined Licking and Kinniconick basins, with further subdi-

vision within both the Kentucky and Licking River basins. However, we found no

evidence for a history of lineage divergence among these structured units. The

movement of N. maculosus is constrained by the lotic network architecture,

which likely drives the evolution of this hierarchical population structure, with

increasing differentiation between sites nested in river basins, and even greater

differentiation between basins. However, we also found evidence for population

structure not explained by river architecture, with an isolated population embed-

ded within the Kentucky River basin.

4. This study demonstrates the heterogeneity in population structure that can

evolve in aquatic species occupying lotic systems and illustrates the potential for

genomic data to disentangle these complex patterns.
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1 | INTRODUCTION

Population structure varies across a spectrum of divergence, ranging

from panmixia to complete isolation of populations (Hutchison &

Templeton, 1999; Wright, 1949). Patterns of population structure

found across the range of a species are influenced by the interaction

between intrinsic factors, such as life history, and extrinsic factors,

such as landscape architecture and dispersal barriers (Coulon et al.,

2006; Finn, Blouin, & Lytle, 2007). While intrinsic factors are

expected to affect a species similarly throughout its range, the effect

of extrinsic factors on population structure can vary because local

landscapes offer different levels of resistance to gene flow (Zeller,

McGarigal, & Whiteley, 2012).

Extrinsic factors are particularly important when considering

the formation of population structure in lotic systems. Gene flow

in riverine species without a terrestrial or volant dispersal stage is

restricted by the hierarchical nature of lotic networks, which offer

limited dispersal paths between populations (Campbell Grant,

Lowe, & Fagan, 2007; Hughes, 2007). Hence, while rates of gene

flow between populations should decrease with distance, even

spatially proximate populations may exhibit little to no gene flow

if they belong to different catchments or basins (e.g., the Stream

Hierarchy model; Meffe & Vrijenhoek, 1988). Site-level factors

such as dams and impoundments can further impede gene flow

by fracturing habitat and isolating populations regardless of prox-

imity within the stream network hierarchy (e.g., the Death Valley

model; Finn et al., 2007; Mullen, Woods, Schwartz, Sepulveda, &

Lowe, 2010).

The complexity of gene flow in lotic systems makes it difficult to

disentangle the factors responsible for forming patterns of genetic

variation. Thus, attempts to estimate particular evolutionary parame-

ters using a model of evolutionary history that does not adequately

account for the impacts of population divergence, gene flow and

demographic history may lead to poor model fit, and inaccurate

parameter estimation (Thom�e & Carstens, 2016). Consequently, com-

prehensive approaches for studying the evolution of population

structure in these systems should properly account for the role of all

of these forces.

Similarly, sufficient sampling of genetic loci is a key factor in

accurately estimating recent, fine-scale population genetic processes

(Catchen et al., 2013; Emerson et al., 2010; Nunziata, Lance, Scott,

Lemmon, & Weisrock, 2017). Studies using traditional molecular

markers (e.g., mitochondrial DNA and microsatellites) have often

been limited to small numbers of evolutionarily independent loci.

However, more recently developed techniques, such as reduced-

representation sequencing using restriction site-associated DNA

(RADseq), permit the sampling of thousands of independently evolv-

ing loci without the need for prior genome sequence information

(Baird et al., 2008; Hohenlohe, Amish, Catchen, Allendorf, & Luikart,

2011; Hohenlohe, Catchen, & Cresko, 2012). These techniques can

thus provide the genomic information needed to tease apart pro-

cesses acting to structure genetic variation at fine geographic scales

(Andrews, Good, Miller, Luikart, & Hohenlohe, 2016). When coupled

with analyses aimed at identifying the forces acting to structure

genetic variation, these data can be highly informative about the

overall evolutionary and population history of a species (Anderson

et al., 2010; Catchen et al., 2013).

In this study, we investigated patterns of population structure

across multiple river basins using genome-wide data generated from

the common mudpuppy salamander, Necturus maculosus (Proteidae).

While many salamander species can disperse terrestrially between

streams (Miller, Snodgrass, & Gasparich, 2015), N. maculosus is obli-

gately paedomorphic and wholly restricted to its aquatic environ-

ment, preventing overland dispersal (Petranka, 1998). Given this

constraint, we predicted that genetic distance between populations

of N. maculosus should increase with river distance and that popula-

tion structure would be partitioned primarily by catchment and

basin. However, we also tested whether idiosyncratic patterns of

isolation and reduced gene flow exist as a result of extrinsic,

site-specific factors such as dams. To avoid confirmation bias, we

developed and tested multiple models of evolutionary history that

consider divergence, gene flow and demographic history, and we

examined the relative influence of spatial scale, stream network

architecture and dispersal barriers (i.e., dams and impoundments).

Our work identifies the role of stream network hierarchy in driving

population structure and also indicates how local barriers can

idiosyncratically alter the connectivity between sites to generate a

more heterogeneous pattern of population structure across the

landscape.

2 | METHODS

2.1 | Sampling sites and design

We sampled N. maculosus at two hierarchical scales (river basins and

sites within basins) to examine spatial patterns of population struc-

ture across eastern and central Kentucky (USA). We sampled within

three major river basins (Figure 1), all of which flow directly into the

Ohio River: the Licking River basin, the Kentucky River basin and

the unbranched Kinniconick Creek basin located in north-eastern

Kentucky. While Kinniconick Creek is not a typical high-order river,

its catchment is independent of other rivers and flows directly into

the Ohio River, thus occupying the same hierarchical level as the

two other rivers. Hereafter, we generally refer to the Kinniconick

Creek basin as a “river basin.” Within each basin, we sampled from

one to five sites (Table 1). The study sites varied in terms of distance

to the next closest site, ranging from 6 to 268.1 km (Table S1), as

measured using the National Inventory of Dams measuring tool

(USACE 2013). Two sites in the Red River (a stream in the Kentucky

basin) were within one km of each other and were treated as a sin-

gle site for this study (Gladie). To assess for the influence of dams

and impoundments as potential barriers to dispersal, we chose basins

with a wide range of damming, from the heavily impounded Ken-

tucky River, to the less-disturbed Licking and Kinniconick basins.

Across our study system, sites were separated by 0–13 dams

(USACE 2013; Table S1).
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We captured N. maculosus at each site using either manual snor-

kel surveys or trapping, depending on the season. We collected 1–7

tissue samples per site using non-destructive tail clipping from both

adult and larval individuals. Tissues were stored in 95% ethanol. A

total of 41 individuals were collected from 10 sites. All tissue sam-

pling took place between August 2013 and September 2015. For a

full description of field methods, see Murphy, Price, Hime, Drayer,

and Weisrock (2016). This research was approved by the Institu-

tional Animal Care and Use Committee (protocol 2013–1073). Col-

lections were made under Kentucky Department of Fish and Wildlife

Resources Scientific Wildlife Collecting permits SC1411030 and

SC1511017.

2.2 | Genetic data collection

A hurdle to the generation of population genomic data from sala-

manders using next generation sequencing (NGS) has been their

large genome size (Gregory, 2017). This is particularly true for

N. maculosus, which has one of the largest genomes among all verte-

brates, estimated at 85 gigabases (Gb). We overcame this issue using

some small adjustments and special considerations in the implemen-

tation of double-digest restriction site-associated DNA (ddRAD)

sequencing (Peterson, Weber, Kay, Fisher, & Hoekstra, 2012). This is

a reduced-representation NGS method that focuses sequencing

effort on a subset of the genomic fragments that are flanked on

each side by restriction enzyme cutting sites. We used a larger

amount of starting DNA (3,000 ng) for library preparation compared

to the standard amount (100–1,000 ng) suggested in Peterson et al.

(2012). Genomic DNA was digested from each individual using the

restriction enzymes, SphI and EcoRI. Restriction fragments were

incorporated into indexed Illumina sequencing libraries and size-

selected for a mean fragment size of 376 bp (base pairs; �10%)

using a PippinPrep (Sage Science). Based on an assumption of an

85-Gb genome (Gregory, 2017), and using fragment distributions

generated from both single-enzyme and double-enzyme digests, we

estimated that this fragment size selection would include approxi-

mately 750,000 unique fragments from a single individual. Paired-

end 150-bp sequencing was performed on pooled libraries using an

Illumina HiSeq 2500. To increase the probability of recovering similar

sets of orthologous loci with high read coverage across multiple

individuals, we were limited to multiplexing 10–11 individuals per

Illumina sequencing lane.

2.3 | ddRAD processing

We analysed our paired-end sequence reads using Stacks v.1.35

(Catchen, Amores, Hohenlohe, Cresko, & Postlethwait, 2011) to

identify the total set of loci within individuals and shared ortholo-

gous loci across individuals. Given our size selection of 376 base

pairs with a �10% range, we expected no overlap between our

paired-end reads; therefore, prior to processing in Stacks, we con-

catenated forward and reverse reads together using a custom script

(script available in the Dryad accession). We filtered reads for quality

using process_radtags in Stacks and removed reads if they contained

uncalled bases, or if they contained a mean quality score < 20 within

a sliding window of 15% of the read length. Reads passing quality

F IGURE 1 Location of sampling sites across the Kentucky,
Licking and Kinniconick River basins. Shape indicates the river basin
in which a sampling site is located. Colour corresponds to genetic
cluster assignment from ADMIXTURE analyses under a K = 5 model

TABLE 1 Sites sampled with corresponding site abbreviation, site
number, basin location and number of individuals captured

Site name
Site
abbreviation Basin

Number of
individuals

Kinniconick Creek Kinni Kinniconick 5

Licking River at

Falmouth

LFal Licking 6

South Fork Licking

River

SFL Licking 4

N. Fork Triplett

Creek 2

Trip2 Licking 5

Craney Creek Craney Licking 3

N. Fork Triplett

Creek 1

Trip1 Licking 6

Gladie Creek Gladie Kentucky 4

Stanton Creek Stanton Kentucky 2

Sturgeon Creek Sturgeon Kentucky 5

Greasy Creek Greasy Kentucky 1
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filtering were then de novo assembled with a minimum stack depth

(i.e., number of reads) of four and a maximum of four mismatches

permitted between reads. We conducted further filtering using popu-

lations in Stacks, by reducing the set of loci to those found in every

individual (i.e., no missing data) and which had a minimum stack

depth of 10 reads. To filter Stacks loci that were potentially com-

prised of reads from paralogous genomic loci, we used the program

VCFtools v0.1.14 (Danecek et al., 2011) to remove all loci with a

maximum mean read depth > 250. Post-filtered Stacks loci were

used to generate both single nucleotide polymorphism (SNP) geno-

type matrices and multilocus sequence alignments. The former was

generated using the Stacks flag –write_random_snp, which randomly

selected a single SNP from each locus (when > 1 SNP was present).

2.4 | Estimating genomic diversity

We assessed genomic diversity for each study site using observed

heterozygosity (Ho), expected heterozygosity (He) and nucleotide

diversity (p). We calculated departure from random mating using

Wright’s inbreeding coefficient (FIS) at each site. To assess for signa-

tures of demographic expansion or contraction, we calculated Taji-

ma’s D using the PopGenome package in R v.3.2.3 (Pfeifer,

Wittelsb€urger, Ramos-Onsins, & Lercher, 2014). We calculated Taji-

ma’s D at the site and basin levels, and with all sites combined, using

a 95% confidence interval around 0 for a rough estimate of signifi-

cance (i.e., �2 > D > 2; Anholt & Mackay, 2009). We assessed

genetic differentiation between sites using pairwise FST statistics. All

summary statistics except for Tajima’s D were calculated in Stacks.

2.5 | Primary assessment of population structure

We used multiple approaches to assess the broad pattern of popula-

tion structure across our three-river study system. First, we used

two different clustering and assignment methods that allow for the

determination of the number of differentiated population genetic

clusters. These methods also allow for the identification of individu-

als that may be admixed with genomic variation from two or more

genetic clusters. For one of these clustering methods, we analysed

our SNP genotype data in replicates of 10 using the model-based

program ADMIXTURE (Alexander, Novembre, & Lange, 2009), which

assigns individuals to genetic clusters using a maximum-likelihood

approach without requiring a pre-defined assignment of individuals

to populations. The best-fitting model was identified as the one with

the number of clusters (K) corresponding with the lowest cross-vali-

dation error score. Results were visualised with the program Clum-

pak (Kopelman, Mayzel, Jakobsson, Rosenberg, & Mayrose, 2015).

As a second population clustering analysis, we analysed our SNP

genotype data using discriminant analysis of principal components

(DAPC; Jombart, Devillard, & Balloux, 2010) implemented in the ade-

genet package in R. This multivariate statistical approach uses a prin-

cipal components analysis to transform data into a smaller set of

uncorrelated variables and then partitions individuals into clusters

that maximise differentiation within discriminant space. We

performed 1,000 replicates of cross-validation using the R package

poppr (Kamvar, Tabima, & Gr€unwald, 2014) to determine the number

of principal components (PCs) that gave highest mean cluster assign-

ment success and lowest mean standard error. Discriminant analyses

were performed using two different levels of hierarchical structure:

(1) using each of the three basins as a separate population, and (2)

dividing the rivers into five populations based on high assignment in

ADMIXTURE at a K = 5 (see Results).

We also used a phylogenetic approach to search for hierarchical

patterns and identify relationships between individuals and popula-

tions across our N. maculosus study system. We analysed our SNP

data to estimate a lineage tree for all individuals using SVDquartets

implemented in PAUP* (Swofford, 2017; Chifman & Kubatko, 2014).

SVDquartets infers tree topology by subsetting data into quartets,

assessing the likelihood of each quartet under a coalescent model,

and then combining quartets into a full tree (Chifman & Kubatko,

2014). This method reduces the amount of computation time

required, compared to other commonly used phylogenetic programs,

while providing comparable results (Chou et al., 2015). We were

thus able to analyse our complete unlinked SNP data set to evaluate

all possible quartets. In addition, we performed 1,000 bootstrap

replicates to generate measures of nodal support.

We examined the partitioning of genetic variation across differ-

ent hierarchical scales of population structure using an analysis of

molecular variance (AMOVA; Excoffier, Smouse, & Quattro, 1992)

implemented in the R package pegas (Meirmans, 2006; Paradis,

2010). As with DAPC, we performed two different analyses: (1) an

analysis that identified the uppermost level of hierarchical structure

using river basins, and (2) an analysis where this was defined based

on results from the above-described population structure analyses.

In all analyses, we calculated the degree to which genetic variation

was partitioned across three levels: between basins or genetic clus-

ters, among sites within basins or within genetic clusters, and among

individuals within localities.

2.6 | Testing for a history of lineage divergence

Although N. maculosus is considered a single species, it is important

to consider the potential for the historical forces of lineage diver-

gence in generating patterns of population structure, particularly

given the history of the ancestral Teays River and its impact on the

formation of the contemporary Ohio River network during late Pleis-

tocene Glaciation (Berendzen, Simons, & Wood, 2003; Teller, 1973).

We used the program Bayesian Phylogenetics and Phylogeography

(BPP) v3.3 to test hypotheses of lineage divergence (Yang & Rannala,

2010). BPP performs unguided species delimitation, jointly estimat-

ing both the species tree and species delimitation under a multi-

species coalescent model in a Bayesian framework. BPP requires the

identification of the maximum number of lineages that could be pre-

sent in a system; branches cannot be split, but the program allows

for collapsing of nodes to combine branches into more inclusive lin-

eages, and allows for the regrafting of branches to alter topology

(Yang, 2015). Thus, we used the most liberal hypothesis of lineage
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divergence using results from ADMIXTURE and assigning each clus-

ter recovered from ADMIXTURE to its own lineage. The number of

individuals was equalised across branches by randomly selecting five

individuals from each cluster. We used a guide tree topology that

was extrapolated from the lineage tree created in SVDquartets.

While the topology of the guide tree should theoretically have little

influence on the results, we eliminated the possibility for topology

biases by running analyses twice: first with the SVDquartet tree, and

then with a randomised tree (Carstens, Pelletier, Reid, & Satler,

2013; Yang & Rannala, 2014). BPP uses multilocus sequence align-

ments as input data. To overcome computation restrictions, we used

a randomly selected subset of 1,877 loci (approximately half of all

loci) for all BPP analyses. Reverse-jump Markov chain Monte Carlo

(MCMC) analyses were run for a total of 1,000,000 generations,

after a burn-in stage of 10,000 generations. Topology and parameter

estimates were sampled every 10 generations for a total of 100,000

samples. To ensure that the divergence and population size priors

were not biasing results, we performed these analyses using a range

of different priors under each of our starting trees. To assess con-

vergence, four replicate analyses were performed for each combina-

tion of starting tree and priors, using the same subset of loci for

each replicate.

2.7 | Testing for isolation by distance and isolation
by barriers

We tested for a signature of isolation by distance (IBD), the effects

of damming, and for correlations between river distance and dam-

ming using Mantel tests of correlations between genetic distance

and river distance, genetic distance and number of dams between

sites, and river distance and number of dams between sites, respec-

tively. We also performed partial Mantel tests (Smouse, Long, &

Sokal, 1986) to test for a correlation between genetic distance and

number of dams between sites while controlling for either geo-

graphic distance or basin assignment, and to test for a correlation

between genetic distance and geographic distance while controlling

for either the number of dams between sites or river basin. All Man-

tel and partial Mantel tests were performed in the R vegan package

(Oksanen et al., 2007) using 9,999 matrix randomisations.

2.8 | Demographic model testing and gene flow
estimation

We performed demographic model testing and parameter estimation

using a coalescent-based Bayesian MCMC approach in Migrate-n

(Beerli & Palczewski, 2010). Migrate-n allows for the assessment of

models that account for the parameters of effective population size

(ϴ) and gene flow (M) and their effect on genetic variation within

and between populations. Marginal likelihoods calculated for models

that vary in gene flow between populations (no migration, unidirec-

tional migration or bidirectional migration) can be used to identify

the best-fitting model for a set of populations, and parameter esti-

mates can then be drawn from the best-fitting model.

We focused this work on eight models that explored gene flow

between the three river basins (Figure S1), and as such, treated each

river basin as a population. Models that account for gene flow

among sites within basins were too parameter rich to be completed

in a feasible amount of time. Furthermore, due to computational lim-

itations, analyses were limited to a randomly selected subset of

1,000 loci. Loci were analysed as sequence alignments, and not as

SNPs. For each set of models, test runs were performed using the

full migration model to determine an appropriate range of priors and

these values were then standardised across all models. All subse-

quent runs were performed using four Markov chains and a static

heating scheme (1.0, 1.5, 3.0 and 1,000,000) swapping every 10 gen-

erations. Chains were run for 10,000,000 generations, with the first

1,000,000 generations discarded as burn-in, and with samples drawn

every 100 generations for a total of 10,000 recorded steps. Ten

replicates were performed for each model to ensure that results

were consistent between runs and provide evidence of convergence.

We calculated Bayes factors (BF) from Bezier log marginal likelihoods

as two times the difference in marginal likelihoods between the

best-fitting model and alternate models. Bayes factors >10 were

considered as decisive support in favour of the best-fitting model

(Kass & Raftery, 1995).

3 | RESULTS

3.1 | Genetic diversity

A total of 1,439,623 loci were identified across all 41 individuals.

Quality filtering resulted in 6,873 loci, with an average length of

290 bp, shared across all individuals with no missing data. In all sam-

pling localities, Ho was higher than He (Table 2); however, the vari-

ance on these calculations was high and there was no significant

difference between the two. Measures of p were generally similar

across localities. FIS values were generally negative, but not signifi-

cantly different from zero (Table 2). Pairwise FST between sampling

sites ranged from 0.061 to 0.264 and were generally greater

between river basins (Table 3). When calculated across all popula-

tions, Tajima’s D was �0.78. Tajima’s D at the basin and site levels

were also generally negative, although a few sites had positive val-

ues (Table S2). Overall, no value of Tajima’s D was substantially large

or small (i.e., < �2 or > 2). Private alleles were roughly similar across

all sampled sites.

3.2 | Population structure

ADMIXTURE results best supported the assignment of individuals

into K = 2 genetic clusters based on cross-validation error scores

(Figure S2); however, models for K = 3–5 were only slightly less sup-

ported based on this metric. The K = 2 model separated the Ken-

tucky basin from the combined Kinniconick and Licking basins

(Figure 2). The K = 3 model further separated the Sturgeon Creek

site from the other Kentucky basin sites. The K = 4 model further

separated the Kinniconick basin from the Licking basin. Finally, the
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K = 5 model further separated the combined SFL and LFal sites from

the remaining Licking basin sites. Overall, individuals were assigned

to their clusters with high probability across all levels of K from 2–5

(Figure 2) with a small number of individuals having assignments

indicating low levels of admixture between clusters (e.g., individuals

sampled from the LFal site in the Licking basin).

Discriminant analysis of principal components cross-validation

resulted in 19 PCs and 2 discriminant axes (DAs) being retained for

the three-population analysis, and 20 PCs and 4 DAs being retained

for the five-population analysis. Results from the three-population

analysis showed strong differentiation on axis 1 between the Ken-

tucky basin and the other two river basins (Figure 3a), and further

differentiation between the Kinniconick and Licking basins on axis 2.

Results from the five-population analysis identified the greatest

amount of differentiation on axis 1 between the Sturgeon Creek site

within the Kentucky basin and the other genetic clusters (Figure 3b).

Additional genetic differentiation existed among clusters on axis 2,

but to a much less extent than that seen on axis 1. While most indi-

viduals were assigned to the cluster primarily associated with their

river basin, some posterior assignments showed discordance

between genetics and geography, with individuals being assigned to

a genetic cluster different than the geographic population from

where they were sampled. For example, in both the three- and five-

population analyses one individual sampled from the Kentucky basin

was given a strong membership probability to a genetic cluster pri-

marily assigned to Licking basin individuals.

Exhaustive quartet sampling in SVDquartets produced an

unrooted lineage tree that clustered populations into different

regions of the tree, but without the formation of monophyletic

groups corresponding to all genetic clusters identified in Admixture

and DAPC analyses (Figure 4). River basins did form monophyletic

groups, with the Kentucky basin and Licking basin both receiving

strong bootstrap support (> 95%).

In all AMOVAs, the majority of genetic variation was explained

by variation among individuals within localities (> 83%; Table 4).

Among-basin variation was not significant when treating the three

individual river basins as the uppermost level of population structure

(p = .145). It was significant at the among-basin level when the Lick-

ing and Kinniconick basins were combined into a single group

(p = .018); however, this explained a relatively small percentage of

the overall genetic variation (6.7%).

3.3 | Tests of lineage divergence

Coalescent-based tests of lineage divergence rejected all hypotheses

of lineage divergence within our study system. A model placing all

populations into a single lineage was consistently supported with a

posterior probability of 1.0 in all analyses, including those using differ-

ent starting guide tree topologies and prior settings. All resulting out-

put files from these analyses can be found in the Dryad accession.

3.4 | IBD and isolation by barriers

Mantel tests applied to the total study system resulted in a positive

correlation between genetic distance and geographic distance

(p < .001, r = .607), and a positive correlation between genetic dis-

tance and number of dams between sites (p < .001, r = .715). Partial

Mantel tests resulted in a significant correlation between genetic dis-

tance and dams when controlling for geographic distance (p < .019,

r = .484). Partial Mantel tests also found significant correlations

between geographic and genetic distances when controlling for river

basin (p = .044, r = .404), and between genetic distance and the

TABLE 2 Population genetic summary statistics for all 10
sampling sites, including observed heterozygosity (Ho), expected
heterozygosity (He), nucleotide diversity (p). Site abbreviations are as
in Table 1

Site Ho He p FIS

Private
alleles

Kinniconick 0.120 0.100 0.111 �0.0201 512

LFal 0.137 0.121 0.132 �0.0104 582

SFL 0.119 0.098 0.112 �0.0131 363

Trip2 0.116 0.102 0.114 �0.0039 199

Craney 0.097 0.091 0.109 0.0202 239

Trip1 0.113 0.094 0.103 �0.0233 167

Gladie 0.147 0.126 0.144 �0.0063 577

Stanton 0.133 0.109 0.145 0.0192 409

Sturgeon 0.121 0.095 0.106 �0.032 415

Greasy 0.111 0.055 0.111 0 163

TABLE 3 Pairwise FST for all 10 sampling sites

LFal SFL Trip2 Craney Trip1 Gladie Stanton Greasy Sturgeon

Kinni 0.078 0.121 0.104 0.121 0.118 0.121 0.161 0.209 0.177

LFal 0.068 0.061 0.071 0.071 0.087 0.112 0.139 0.133

SFL 0.104 0.128 0.114 0.120 0.166 0.226 0.181

Trip2 0.082 0.065 0.111 0.149 0.196 0.167

Craney 0.094 0.124 0.182 0.264 0.192

Trip1 0.123 0.164 0.212 0.181

Gladie 0.099 0.139 0.124

Stanton 0.240 0.164

Greasy 0.211
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F IGURE 2 Assignment plots resulting from ADMIXTURE analyses for models of K = 2–5. Vertical bars represent individuals with the
proportion of their colour representing the level of probability of assignment to a particular genetic cluster. Abbreviations at the bottom of the
plots refer to sample localities listed in Table 1

F IGURE 3 DAPC scatterplot for two clusters (a) and five clusters (b), with assignment plots indicating probability of assignment to a
particular cluster. Asterisks indicate assignment of a site to a different cluster than the geographic population from where they were sampled
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number of dams when controlling for the effect of basin (p = .009,

r = .7). No significant correlation was found between genetic dis-

tance and geographic distance when controlling for the effect of

dams between sites (p = .692, r = �.105).

Partial Mantel tests applied to the combined Licking and Kinni-

conick basins found a positive correlation between genetic and geo-

graphic distances when controlling for the number of dams

(p < .044, r = .483). Within the Kentucky basin, no significant rela-

tionship was detected between genetic distance and geographic

distance (p = .17, r = .453) or between genetic distance and the

number of dams (p = .17, r = .490).

3.5 | Demographic model testing and gene flow
estimation

Migrate-n results produced decisive support for a model that

included bidirectional gene flow between the Kentucky and Licking

basins, and no gene flow between the Kinniconick basin and either

the Kentucky or Licking basins (Figure 5). This model was favoured

over the next best model, which allowed for bidirectional migration

between all rivers, with a BF = 4418, indicating a substantially worse

fit to our data (Table 5). Under the best-fit model, the Kentucky

basin had the largest effective population size with ϴ = 0.0044 (95%

CI: 0.0027, 0.0060), followed by the Licking River with ϴ = 0.0023

(0.00067, 0.0040) and the Kinniconick with ϴ = 0.00021. The mean

migration rate (M) was 764 (400, 1,120) from the Kentucky basin

into the Licking basin and 7,501 (7,000, 7,960) from the Licking to

the Kentucky. We note that all estimates of ϴ and M are scaled by

the mutation rate. Conversion of these two parameters into an esti-

mate of the mean number of migrants per generation (Nm) produced

an Nm = 0.45 from the Kentucky basin into the Licking basin, and

an Nm = 8.16 from the Licking basin into the Kentucky basin.

4 | DISCUSSION

Within our N. maculosus study system, we used a genomic approach

to test the prediction that population structure should be positively

correlated with river distance and that some populations may be dis-

proportionately affected by local factors. Our results demonstrated

that population structure is indeed influenced by river network archi-

tecture, but that substantial patterns of isolation and limited gene

flow also exist that are not explained by hierarchical network archi-

tecture. Consequently, even on this relatively fine scale, population

structure cannot be explained by a single model.

4.1 | Tests of lineage divergence

The quantification of gene flow and demography can be strongly

biased if historical lineage divergence was a major factor in the

F IGURE 4 SVDquartets unrooted lineage tree of all individuals
sampled. Branches are coloured based on population assignments
from ADMIXTURE. Nodes marked with filled black circles have >

95% bootstrap support

TABLE 4 Results from analysis of molecular variance using hierarchical structure according to river basin and results from population
structure analyses

Level of structure Source of Variation
Variance
components

Percentage
of variation

Fixation
indices p

Kentucky Among rivers 0.854 2.953 0.03 .145

versus Licking Among localities within rivers 6.033 11.799 0.122 .001

versus Kinniconick Among samples within localities �9.316 85.248 0.148 .001

Kentucky Among clusters 3.364 6.745 0.067 .018

versus Licking Among sites within clusters 6.095 10.157 0.109 .001

+ Kinniconick Among samples within sites �9.475 83.098 0.169 .001
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structuring of genetic variation (Thom�e & Carstens, 2016). Hence,

when clear geographic patterns of genetic structure are identified,

it is important to determine whether these patterns reflect histori-

cal lineage divergence or are evidence of more recent population

structure. It is possible that historical lineage divergence could have

played a role in our N. maculosus study system. During the Pleis-

tocene, the Kentucky basin was connected with the old Ohio River

basin, and the Licking and Kinniconick basins were connected to

the north-flowing Teays River palaeodrainage (Teller, 1973; Teller &

Goldthwait, 1991). These palaeodrainage patterns have been linked

to the population structure and divergence of a wide range of

aquatic species, including fish, aquatic insects and salamanders

(Berendzen et al., 2003; Kozak, Blaine, & Larson, 2006; Kuchta,

Haughey, Wynn, Jacobs, & Highton, 2016; Pessino, Chabot, Gior-

dano, & DeWalt, 2014).

Despite this historical potential, we found no evidence for a his-

tory of lineage divergence. Coalescent-based tests strongly rejected

models of lineage divergence among any of the individual or com-

bined genetic clusters identified in the exploratory analyses of popu-

lation structure, giving us confidence in treating our study system as

a set of populations linked together by restricted gene flow. These

results are congruent with a study of mtDNA variation in N. maculo-

sus (Stedman, 2016), which identified a very shallow phylogeographic

history across its eastern range, with no signature of divergence that

could be linked to the historical Teays palaeodrainage.

4.2 | Population structure and gene flow in
N. maculosus

In general, population structure of N. maculosus in our study sys-

tem appears to be influenced by network architecture, with

genetic differentiation increasing with river distance, and with

some of the strongest patterns of differentiation occurring

between river basins. This pattern was evident in our explorations

of population structure and general summary statistics (i.e., FST), as

well as results from simple Mantel tests, which indicated a correla-

tion between geographic and genetic distance across the study

system. Species restricted to a continuously connected dendritic

network generally are expected to follow this pattern [e.g., the

Stream Hierarchy Model (Meffe & Vrijenhoek, 1988)], and popula-

tion genetic studies in fully aquatic salamander species have con-

sistently followed this expectation, including investigations of

Cope’s giant salamander, Dicamptodon copei (Dicamptodontidae;

Steele, Baumsteiger, & Storfer, 2009), and the hellbender, Crypto-

branchus alleganiensis (Cryptobranchidae; Unger, Rhodes, Sutton, &

Williams, 2013). Necturus maculosus may have the ability to dis-

perse long distances; it can inhabit a variety of habitats (Petranka,

1998) and is suggested to exhibit seasonal migration (Matson,

1998). However, it has also been shown to exhibit synchronised

upstream movements that may be related to spawning (Green &

Pauley, 1987; Pfingsten et al., 2013; Shoop & Gunning, 1967).

This, coupled with high nest site fidelity (Matson, 1998; Shoop &

Gunning, 1967), may constrain dispersal and yield the strong dif-

ferentiation we see across basins.

However, not all of our results point to an exclusive link

between genetic and riverine distance. Indeed, numerous lines of

evidence identify patterns of population structure that are not influ-

enced by river network architecture. At the broadest scale, while the

three river basins are each identified as genetically differentiated

groups in our exploratory analyses of population structure, AMOVAs

indicated that differentiation among the three river basins only

accounted for ~3% of the total genetic variation. Differentiation

within river basins accounted for almost 12% of genetic variation,

indicating a substantial effect for the reduction in gene flow within

river basins. In addition, across the total study system, we found a

significant effect for the role of dams in driving genetic

F IGURE 5 Schematic of the best-fitting Migrate-n model
showing estimated effective population sizes (ϴ) of each basin and
the mean number of migrants per generation between basins (Nm)

TABLE 5 Demographic model selection for analyses of three-
population models treating the Kentucky, Kinniconick and Licking
basins as separate populations. Models are listed according to their
level of support from marginal likelihoods and Bayes factors. See
Figure S1 in the Supporting Information for the full model schematic
with corresponding model labels

Model

Bezier
approximation
marginal
likelihood Bayes factor Interpretation

G �686208 0 No migration

TO/FROM Kinni

A �690626 �4418 FULL MODEL

D �690910 �4703 No migration between

Kentucky and Kinni

B �691051 �4843 No migration between

Kentucky and Licking

C �692022 �5814 No migration between

Licking and Kinni

E �963610 �277402 No migration

TO/FROM Licking

H �1145516 �459308 No migration

F �1152748 �466540 No migration TO/FROM

Kentucky
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differentiation, even after controlling for the effect of geographic

distance. Furthermore, no significant correlation was found between

genetic and geographic distances after controlling for the effect of

dams. Dams significantly affect the dispersal and population struc-

ture of aquatic species (Fullerton et al., 2010; Neraas & Spruell,

2001; Nislow, Hudy, Letcher, & Smith, 2011), and populations of

aquatic species in impounded rivers have been shown to have signif-

icantly increased population genetic structure relative to unim-

pounded rivers (Bessert & Ort�ı, 2008). Although the effects of

damming have been widely reported in fish species, our study sug-

gests that the damming could possibly affect obligately aquatic sala-

manders in a similar manner.

One of the more interesting patterns that surfaced in our results

was the great genetic distinctiveness of the Sturgeon Creek popula-

tion within the Kentucky River basin. DAPC results based on the

assignment of individuals to five genetic clusters were particularly

surprising in separating Sturgeon Creek from all other genetic groups

to a greater extent than that between any other group (Figure 3b).

The reasons underlying this strong pattern of differentiation for Stur-

geon Creek are unclear. Other populations within the Kentucky River

have as large or larger FST values when compared to sites within or

outside of this basin. Measures of genetic diversity for Sturgeon

Creek, such as heterozygosity or nucleotide diversity, do not seem

to differentiate it from other sampling localities, indicating that

recent demographic changes (e.g., population decline) are not the

cause of its genetic distinctiveness. Further work will be required to

better understand this result, including sampling additional N. macu-

losus localities within Sturgeon Creek.

In our model-based analysis of gene flow treating the three

basins as separate populations, the top supported model allowed for

bidirectional gene flow between the Kentucky and Licking basins,

but contained no gene flow between the Kinniconick basin and

either the Kentucky or Licking basins. The connection between the

Kentucky and Licking basins is consistent with river flow, with sub-

stantially higher rates of gene flow from the Licking basin into the

Kentucky basin (Nm = 8.16). This is higher than the standard bench-

mark minimum of Nm = 1 generally considered sufficient to prevent

differentiation between populations; however, violations of the many

assumptions of the one migrant per generation rule can result in

higher Nm levels, while still resulting in population differentiation

(Mills & Allendorf, 1996).

The lack of model-based support for gene flow in or out of the

Kinniconick River basin was surprising given its close association

with the Licking River basin in the ADMIXTURE and DAPC results.

However, the Kinniconick basin was distinct when exploring higher

levels of genetic clustering (i.e., ≥K = 4), which indicated a partition-

ing of genetic variation at a much finer level. We suggest that these

results are consistent with the Kinniconick basin becoming relatively

recently isolated from the other river basins in our study. We

attempted to perform more focused model-based examinations of

gene flow between the Licking and Kinniconick basins, which could

have been useful in further clarifying connectivity among proximal

basins. However, these analyses exhibited very poor signs of

convergence on the posterior distribution and are not presented.

Future work with greater sampling, potentially including individuals

sampled from the Ohio River, may be useful in better informing the

fine-scale patterns of gene flow between basins.

5 | CONCLUSIONS

To effectively conserve riverine landscapes and species, we must

first understand how landscape features and life history traits

have worked in concert to shape the current distribution and pop-

ulation structure of species. This requires teasing apart patterns of

population structure and gene flow at multiple evolutionary and

spatial scales. The comparative study of other freshwater taxa

across our study system, such as fish and freshwater mussels, will

be useful in identifying whether the patterns of population struc-

ture identified here, especially the isolation of the Sturgeon Creek

site, are unique to N. maculosus, or shared across aquatic commu-

nities. Necturus maculosus serves as a host for an imperiled

unionid mussel (Simpsonaias ambigua), the only known mussel-host

system that involves a non-fish host, and an understanding of

population structure and gene flow of both species could be par-

ticularly informative of the shared factors affecting these species

(Zanatta & Wilson, 2011).
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