10.2 to 21.6%, depending on season (Platt et al. 2010, op. cit.). In Southeast Asia where anthropogenic burning is common during the dry season (Mitchell et al., op. cit.), fire-related mortality has been documented in Geochelone platynota (Platt et al. 2003, op. cit.), Indotestudo elongata (Thirakhupt and van Dijk, op. cit.), I. forstenii (Platt et al. 2001. Chelon. Conserv. Biol. 4:154–159), and Melanochelys trijuga (Mitchell and Rhodin 1996. Chelon. Conserv. Biol. 2:66–72). Although reports of fire-caused mortality appear lacking for *M. emys*, the extent of fire scarring we observed in one individual suggests that such injuries at least occasionally result in death. Because the ability of turtle populations to withstand even moderate levels of increased mortality among larger size classes is doubtful (Congdon et al. 1993. Conserv. Biol. 7:826–833; Congdon et al. 1994. Amer. Zool. 34:397–408), mortality due to anthropogenic burning together with over-harvesting and habitat destruction potentially threatens the continued survival of *M. emys* in Myanmar.

We thank the Ministry of Environmental Conservation and Forestry for granting us permission to conduct research in Myanmar. Continuing support for assurance colonies has been provided by Turtle Survival Alliance and Wildlife Conservation Society. Additional support for SGP was provided by Andy Sabin and the Sabin Family Foundation. We thank Deb Levinson and the library staff at Wildlife Conservation Society, and Peter Paul van Dijk for literature. Comments by Lewis Medlock improved an early draft of this manuscript. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

STEVEN G. PLATT (e-mail: sgplatt@gmail.com), KALYAR PLATT (e-mail: kalyarp Platt@gmail.com), WIN KO KO (e-mail: winkoko@gmail.com), KHIN MYO MYO (e-mail: kmyomyo@gmail.com), and ME ME SOE, Wildlife Conservation Society/Turtle Survival Alliance - Myanmar Program, Office Block C-1, Aye Yeik Mon 1st Street, Haing Township, Yangon, Myanmar (e-mail: memesoeta@gmail.com); BRIAN D. HORNE, Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, New York 10460-1099, USA (e-mail: bhorne@wcs.org); THOMAS R. RAINWATER, U.S. Fish and Wildlife Service, Ecological Services Field Office, 176 Croghan Spur Road, Suite 200, Charleston, South Carolina 29407, USA (e-mail: trrainwater@gmail.com).

While collecting data for an ongoing *C. acutus* ecology study on 9 August 2013 at approximately 2115 h, a hatching *C. acutus* was captured in coastal mangrove habitat of Florida Bay, Everglades National Park, Florida, USA (25.1749′N, 80.6433′W). The hatching was feeding on a small isopod of the genus *Ligia* (Fig. 1) while researchers collected morphometric data. After approximately a dozen seeds over the course of three or four minutes.

BERKELEY W. BOONE, AMBER MOONEY, and JAMES MUROCK, Georgia Department of Natural Resources, Charlie Elliott Wildlife Center, 543 Elliott Trail, Mansfield, Georgia 30055 USA (e-mail: bboone@dnr.state.ga.us).

TERRAPENE CAROLINA (Eastern Box Turtle). **DIET.** Terrapene carolina consumes a variety of food including insects, plants, and fungi (Strang 1983. J. Herpetol. 17:43–47). Mushrooms have been noted as a common source of food (Stickel 1950. Ecol. Monogr. 4:351–378); however, most published investigations on *T. carolina* consumption of mushrooms fail to identify the mushroom species. The few mushroom species noted in publications include Russula spp., Leccunum scaber, Amanita vaginata, and Cyathus striatus (Nichols 1917. Copeia 46:66–88; Dodd 2002. North American Box Turtles: A Natural History. University of Oklahoma Press, Oklahoma. 231 pp.). On 15 July 2014, an adult female *T. carolina* was found consuming a large Bicolored Bolet mushroom (*Boletus bicolor*) in Madison Co., Kentucky, USA (37.57522′N, 84.22002′E, WGS84; elev. 262 m). *Boletus bicolor* is a non-toxic mushroom that is found in eastern North America and is hosted by the Northern Red Oak (*Quercus rubra*) (Homola and Mistretta 1977. Maine Agric. Exp. Sta. Bull. No. 735). We believe this represents the first documented case of *B. bicolor* being consumed by *T. carolina*.

We thank S. Bec for identifying *B. bicolor* and K. Dodd for providing insights into *T. carolina* mushroom consumption.

LEO J. FLECKENSTEIN, Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40506, USA (e-mail: leo.fleckenstein@uky.edu); **MICKEY AGHA** (e-mail: mickey. agha@uky.edu), and **STEVEN J. PRICE,** Department of Forestry, University of Kentucky, Lexington, Kentucky 40506, USA (e-mail: steven.price@uky.edu).